LESSON 3.1c

Solving Quadratics by Graphing and by Square Roots

Today you will:

- Solve quadratic functions by graphing
- Solve quadratic functions by finding square roots
- Practice using English to describe math processes and equations

Core Vocabulary:

- quadratic equation in one variable, p. 94
- root of an equation, p. 94
- Previous
 - properties of square roots
 - rationalizing the denominator

What does it mean to solve x + 2 = 3?

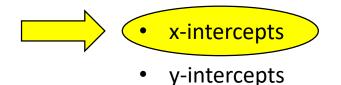
• find the single value of x that makes the equation "work" or be true...there is only 1 variable

What does it mean to solve y = x + 2?

- find **all** the values of x that makes the equation "work" or be true **AND** the corresponding y's
- that is ***A LOT*** of values! The domain and range are both all real numbers...there are 2 variables

What does it mean to solve $y = x^2 + x - 2$?

- find all the values of x that makes the equation "work" or be true **AND** the corresponding y's
- again, a lot of values ...
- typically when we think about "solving" a quadratic we are interested in the *defining* values for the equation
- What do you think are *defining* values for a quadratic?
 - vertex



So how do we define "solving a quadratic?"

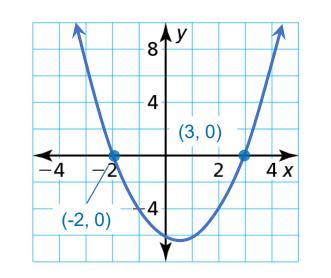
- By finding it's *x*-intercepts.
- Definition:
 - *<u>Roots of an equation</u>*: the *x*-intercepts
 - To find the roots of a quadratic means find it's *x*-intercepts
- How can we find the **roots of an equation** (*x*-intercepts)?
 - One way is by graphing the equation on your graphing calculator
 - Hit **Y**= and enter the equation
 - Hit **GRAPH** to see the graph
 - Hit **TABLE** (2nd then GRAPH) to see the table of values
 - Use the up and down arrows to move through the table and find the *x*-intercepts (where *y* is zero)
 - On paper double-check your answer (plug the *x* values in and verify you get zero)

Solve each equation by graphing.

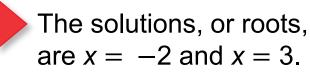
a. $x^2 - x - 6 = 0$ b

SOLUTION

a. The equation is in standard form. **b.** Add -4x to each side to obtain Graph the related function $y = x^2 - x - 6.$

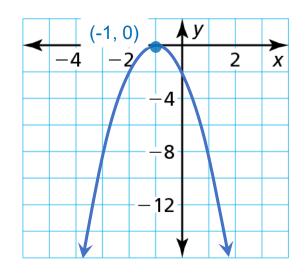


The *x*-intercepts are -2 and 3.

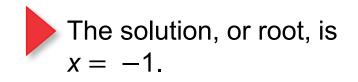


$$-2x^2-2=4x$$

 $-2x^2 - 4x - 2 = 0$. Graph the related function $y = -2x^2 - 4x - 2$.



The *x*-intercept is -1.



Check $x^2 - x - 6 = 0$ $(-2)^2 - (-2) - 6 \stackrel{?}{=} 0$ $4 + 2 - 6 \stackrel{?}{=} 0$ 0 = 0 $x^2 - x - 6 = 0$ $3^2 - 3 - 6 \stackrel{?}{=} 0$ $9 - 3 - 6 \stackrel{?}{=} 0$ 0 = 0 How can we find the **roots of an equation** (*x*-intercepts)?

- 1. By graphing the equation on your graphing calculator (we just did this)
- 2. Algebraically (what we are going to do next)
 - Get the equation into standard form and set equal to zero: $ax^2 + bx + c = 0$
 - ...then solve for *x*!
 - What are we doing when we do this?
 - In $ax^2 + bx + c = 0$ what is the value of y?
 - When y = 0 we are finding the *x*-intercepts! We are finding the *roots of the equation*.

We are going to learn a few different methods of solving a quadratic algebraically:

- using square roots (L3.1 today)
- by factoring / "finding the zeros" of the function (L3.1 tomorrow)
- completing the square (L3.3)
- using the quadratic function (L3.4)

Square roots:

- 1. A square root of a number is a value that, when multiplied by itself, gives the number.
- 2. Example: 4 × 4 = 16, so a square root of 16 is 4.

Why does it say "so **A** square root of 16 is 4"??? Right! Because there is another number that works here: -4

NOTE: any **positive** real number has two **square roots**, one positive and one negative.

Why does it say "any **POSITIVE** real number"??? Because you can't take the square root of a negative number.

Why?

Because you can't find a number which multiplied by itself gives a negative number. A negative times a negative gives a positive.

Solving with square roots:

 \sqrt{a}

$$x^{2} = 25$$

$$\sqrt{x^{2}} = \sqrt{25}$$

$$x = \sqrt{5 \cdot 5}$$

$$x = \pm 5$$

$$x = \pm \sqrt{9 \cdot 2}$$

$$x = \pm \sqrt{9 \cdot 2}$$

$$x = \pm \sqrt{9 \sqrt{2}}$$

$$x = \pm \sqrt{9 \sqrt{2}}$$

$$x = \pm 3\sqrt{2}$$
Product Property of Square Roots
$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$

Solve each equation using square roots.

a. $4x^2 - 31 = 49$	b. $3x^2 + 9 = 0$	c. $\frac{2}{5}(x+3)^2 = 5$
a. $4x^2 - 31 = 49$	b. $3x^2 + 9 = 0$	c. $\frac{2}{5}(x+3)^2 = 8$

SOLUTION

a. $4x^2 - 31 = 49$	Write the equation.
$4x^2 = 80$	Add 31 to each side.
$x^2 = 20$	Divide each side by 4.
$x = \pm \sqrt{20}$	Take square root of each side.
$x = \pm \sqrt{4} \cdot \sqrt{5}$	Product Property of Square Roots
$x = \pm 2\sqrt{5}$	Simplify.

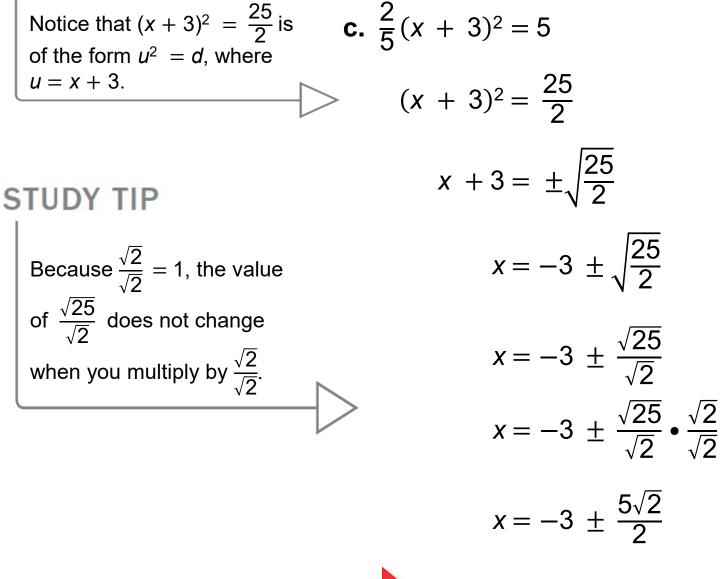
The solutions are $x = 2\sqrt{5}$ and $x = -2\sqrt{5}$.

b. $3x^2 + 9 = 0$ Write the equation. $3x^2 = -9$ Subtract 9 from each side.

 $x^2 = -3$ Divide each side by 3.

The square of a real number cannot be negative. So, the equation has no real solution.

LOOKING FOR STRUCTURE



Write the equation.

Multiply each side by $\frac{5}{2}$.

Take square root of each side.

Subtract 3 from each side.

Quotient Property of Square Roots

Multiply by $\frac{\sqrt{2}}{\sqrt{2}}$.

Simplify.

The solutions are
$$x = -3 + \frac{5\sqrt{2}}{2}$$
 and $x = -3 - \frac{5\sqrt{2}}{2}$

Homework

Pg 99, #3-24